Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Wellcome Open Research ; 2020.
Article in English | ProQuest Central | ID: covidwho-2292262

ABSTRACT

Background: Since the start of the COVID-19 epidemic in late 2019, there have been more than 152 affected regions and countries with over 110,000 confirmed cases outside mainland China. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries. Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that more than two thirds (70%, 95% CI: 54% - 80%, compared to Singapore;75%, 95% CI: 66% - 82%, compared to multiple countries) of cases exported from mainland China have remained undetected. Conclusions: These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.

2.
Commun Med (Lond) ; 2: 54, 2022.
Article in English | MEDLINE | ID: covidwho-1947549

ABSTRACT

Background: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requires consideration of delay-distributions from time from infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning) alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully propagated uncertainty or accounted for these potential biases, particularly seroreversion. Methods: We built a Bayesian statistical model that incorporates these factors and applied this model to simulated data and 10 serologic studies from different countries. Results: We demonstrate that seroreversion becomes a crucial factor as time accrues but is less important during first-wave, short-term dynamics. We additionally show that disaggregating surveys by regions with higher versus lower disease burden can inform serologic test specificity estimates. The overall IFR in each setting was estimated at 0.49-2.53%. Conclusion: We developed a robust statistical framework to account for full uncertainties in the parameters determining IFR. We provide code for others to apply these methods to further datasets and future epidemics.

3.
Wellcome Open Res ; 5: 143, 2020.
Article in English | MEDLINE | ID: covidwho-1675237

ABSTRACT

Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries. Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that up to 70% (95% CI: 54% - 80%) of imported cases could remain undetected relative to the sensitivity of surveillance in Singapore. The percentage of undetected imported cases rises to 75% (95% CI 66% - 82%) when comparing to the surveillance sensitivity in multiple countries. Conclusions: Our analysis shows that a large number of COVID-19 cases remain undetected across the world.  These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.

4.
BMC Med ; 19(1): 281, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523309

ABSTRACT

BACKGROUND: Model-based estimates of measles burden and the impact of measles-containing vaccine (MCV) are crucial for global health priority setting. Recently, evidence from systematic reviews and database analyses have improved our understanding of key determinants of MCV impact. We explore how representations of these determinants affect model-based estimation of vaccination impact in ten countries with the highest measles burden. METHODS: Using Dynamic Measles Immunisation Calculation Engine (DynaMICE), we modelled the effect of evidence updates for five determinants of MCV impact: case-fatality risk, contact patterns, age-dependent vaccine efficacy, the delivery of supplementary immunisation activities (SIAs) to zero-dose children, and the basic reproduction number. We assessed the incremental vaccination impact of the first (MCV1) and second (MCV2) doses of routine immunisation and SIAs, using metrics of total vaccine-averted cases, deaths, and disability-adjusted life years (DALYs) over 2000-2050. We also conducted a scenario capturing the effect of COVID-19 related disruptions on measles burden and vaccination impact. RESULTS: Incorporated with the updated data sources, DynaMICE projected 253 million measles cases, 3.8 million deaths and 233 million DALYs incurred over 2000-2050 in the ten high-burden countries when MCV1, MCV2, and SIA doses were implemented. Compared to no vaccination, MCV1 contributed to 66% reduction in cumulative measles cases, while MCV2 and SIAs reduced this further to 90%. Among the updated determinants, shifting from fixed to linearly-varying vaccine efficacy by age and from static to time-varying case-fatality risks had the biggest effect on MCV impact. While varying the basic reproduction number showed a limited effect, updates on the other four determinants together resulted in an overall reduction of vaccination impact by 0.58%, 26.2%, and 26.7% for cases, deaths, and DALYs averted, respectively. COVID-19 related disruptions to measles vaccination are not likely to change the influence of these determinants on MCV impact, but may lead to a 3% increase in cases over 2000-2050. CONCLUSIONS: Incorporating updated evidence particularly on vaccine efficacy and case-fatality risk reduces estimates of vaccination impact moderately, but its overall impact remains considerable. High MCV coverage through both routine immunisation and SIAs remains essential for achieving and maintaining low incidence in high measles burden settings.


Subject(s)
COVID-19 , Measles , Child , Humans , Immunization Programs , Infant , Measles/epidemiology , Measles/prevention & control , SARS-CoV-2 , Vaccination
5.
Curr Opin Chem Eng ; 34: 100761, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1509697

ABSTRACT

Antimicrobial and self-cleaning nanomaterial coatings have attracted significant research attention in recent years due to the growing global threat of infectious diseases, the emergence of new diseases such as COVID-19, and increases in healthcare-associated infections. Although there are many reportedly successful coating technologies, the evaluation of antimicrobial performance is primarily conducted under simple laboratory conditions without adequate testing under real environmental conditions that reflect practical use and more importantly, reveal unintended outcomes. Furthermore, there is no standardized evaluation methodology to assess the long-term stability or the consequences associated with coating deterioration, such as the ecological impacts of nanomaterials or the proliferation of antibiotic-resistant bacteria/genes. In this review, we propose a precautionary framework that integrates a rigorous assessment of potential risks and limitations of nanomaterial coatings for antimicrobial applications as intrinsic to a comprehensive evaluation of their benefits. In addition, we summarize some emerging coating technologies as promising strategies to minimize unintended risks and enhance performance.

6.
Clin Infect Dis ; 73(3): e754-e764, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338688

ABSTRACT

BACKGROUND: Understanding the drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is crucial for control policies, but evidence of transmission rates in different settings remains limited. METHODS: We conducted a systematic review to estimate secondary attack rates (SARs) and observed reproduction numbers (Robs) in different settings exploring differences by age, symptom status, and duration of exposure. To account for additional study heterogeneity, we employed a beta-binomial model to pool SARs across studies and a negative-binomial model to estimate Robs. RESULTS: Households showed the highest transmission rates, with a pooled SAR of 21.1% (95% confidence interval [CI]:17.4-24.8). SARs were significantly higher where the duration of household exposure exceeded 5 days compared with exposure of ≤5 days. SARs related to contacts at social events with family and friends were higher than those for low-risk casual contacts (5.9% vs 1.2%). Estimates of SARs and Robs for asymptomatic index cases were approximately one-seventh, and for presymptomatic two-thirds of those for symptomatic index cases. We found some evidence for reduced transmission potential both from and to individuals younger than 20 years of age in the household context, which is more limited when examining all settings. CONCLUSIONS: Our results suggest that exposure in settings with familiar contacts increases SARS-CoV-2 transmission potential. Additionally, the differences observed in transmissibility by index case symptom status and duration of exposure have important implications for control strategies, such as contact tracing, testing, and rapid isolation of cases. There were limited data to explore transmission patterns in workplaces, schools, and care homes, highlighting the need for further research in such settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Contact Tracing , Family Characteristics , Humans , Incidence
7.
Sci Transl Med ; 13(602)2021 07 14.
Article in English | MEDLINE | ID: covidwho-1280393

ABSTRACT

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modeling framework, allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rt eff) below 1 consistently; if introduced 1 week earlier, it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 [95% credible interval (CrI): 15,900 to 38,400]. The infection fatality ratio decreased from 1.00% (95% CrI: 0.85 to 1.21%) to 0.79% (95% CrI: 0.63 to 0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95% CrI: 14.7 to 35.2%) than those residing in the community (7.9%, 95% CrI: 5.9 to 10.3%). On 2 December 2020, England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95% CrI: 5.4 to 10.2%) and 22.3% (95% CrI: 19.4 to 25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow nonpharmaceutical interventions to be lifted without a resurgence of transmission.


Subject(s)
COVID-19 , Epidemics , Aged , Communicable Disease Control , England/epidemiology , Humans , SARS-CoV-2
8.
Virus Evol ; 7(1): veaa102, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1145192

ABSTRACT

Analysis of genetic sequence data from the SARS-CoV-2 pandemic can provide insights into epidemic origins, worldwide dispersal, and epidemiological history. With few exceptions, genomic epidemiological analysis has focused on geographically distributed data sets with few isolates in any given location. Here, we report an analysis of 20 whole SARS- CoV-2 genomes from a single relatively small and geographically constrained outbreak in Weifang, People's Republic of China. Using Bayesian model-based phylodynamic methods, we estimate a mean basic reproduction number (R 0) of 3.4 (95% highest posterior density interval: 2.1-5.2) in Weifang, and a mean effective reproduction number (Rt) that falls below 1 on 4 February. We further estimate the number of infections through time and compare these estimates to confirmed diagnoses by the Weifang Centers for Disease Control. We find that these estimates are consistent with reported cases and there is unlikely to be a large undiagnosed burden of infection over the period we studied.

9.
Wellcome Open Res ; 5: 81, 2020.
Article in English | MEDLINE | ID: covidwho-1068026

ABSTRACT

Background: The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods: Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results: Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies.

10.
EClinicalMedicine ; 28: 100603, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1065026

ABSTRACT

BACKGROUND: Routine services for tuberculosis (TB) are being disrupted by stringent lockdowns against the novel SARS-CoV-2 virus. We sought to estimate the potential long-term epidemiological impact of such disruptions on TB burden in high-burden countries, and how this negative impact could be mitigated. METHODS: We adapted mathematical models of TB transmission in three high-burden countries (India, Kenya and Ukraine) to incorporate lockdown-associated disruptions in the TB care cascade. The anticipated level of disruption reflected consensus from a rapid expert consultation. We modelled the impact of these disruptions on TB incidence and mortality over the next five years, and also considered potential interventions to curtail this impact. FINDINGS: Even temporary disruptions can cause long-term increases in TB incidence and mortality. If lockdown-related disruptions cause a temporary 50% reduction in TB transmission, we estimated that a 3-month suspension of TB services, followed by 10 months to restore to normal, would cause, over the next 5 years, an additional 1⋅19 million TB cases (Crl 1⋅06-1⋅33) and 361,000 TB deaths (CrI 333-394 thousand) in India, 24,700 (16,100-44,700) TB cases and 12,500 deaths (8.8-17.8 thousand) in Kenya, and 4,350 (826-6,540) cases and 1,340 deaths (815-1,980) in Ukraine. The principal driver of these adverse impacts is the accumulation of undetected TB during a lockdown. We demonstrate how long term increases in TB burden could be averted in the short term through supplementary "catch-up" TB case detection and treatment, once restrictions are eased. INTERPRETATION: Lockdown-related disruptions can cause long-lasting increases in TB burden, but these negative effects can be mitigated with rapid restoration of TB services, and targeted interventions that are implemented as soon as restrictions are lifted. FUNDING: USAID and Stop TB Partnership.

11.
J Travel Med ; 27(8)2020 12 23.
Article in English | MEDLINE | ID: covidwho-1059308
12.
Int J Infect Dis ; 102: 463-471, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-966658

ABSTRACT

OBJECTIVES: In this data collation study, we aimed to provide a comprehensive database describing the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19) throughout the main provinces in China. METHODS: From mid-January to March 2020, we extracted publicly available data regarding the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted descriptive analyses of the epidemic in the six most-affected provinces. RESULTS: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends differed among provinces. Compared with Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as the local transmission of COVID-19 declined, switching the focus of measures to the testing and quarantine of inbound travellers may have helped to sustain the control of the epidemic. CONCLUSIONS: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database containing these indicators and information regarding control measures is a useful resource for further research and policy planning in response to the COVID-19 epidemic.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , COVID-19/prevention & control , China/epidemiology , Contact Tracing , Databases, Factual , Humans
13.
2020.
Non-conventional in English | Homeland Security Digital Library | ID: grc-740234

ABSTRACT

From the Introduction: The Imperial College London COVID-19 [coronavirus disease 2019] Response Team initiated activities of data collation in mid-January, to understand the COVID-19 epidemic in China and its potential impact on other countries. The Imperial Team, together with volunteers, made considerable efforts to collate aggregated data as well as individual patient information from publicly available, national and local situation reports published by health authorities in China. Part of these collated data have been used to inform transmission dynamics and epidemiology of COIVD-19 in several studies of the Team, including disease severity and fatality, phylodynamics in Shandong, and the association between inner-city movement and transmission. We additionally reviewed control measures, school reopening, and work resumption that may relate to the trends across provinces in China. [...] In this report, we publish the collated data and conduct a descriptive analysis of the subnational epidemic trends and interventions. Drawing on epidemic progression and response measures in Chinese provinces affected by COVID-19 early on may provide insights for policy planning in other countries.COVID-19 (Disease);Epidemiology;Public health

14.
Lancet Glob Health ; 8(9): e1132-e1141, 2020 09.
Article in English | MEDLINE | ID: covidwho-641159

ABSTRACT

BACKGROUND: COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. METHODS: Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. FINDINGS: In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. INTERPRETATION: Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.


Subject(s)
Coronavirus Infections/epidemiology , Developing Countries , HIV Infections/prevention & control , Health Services Accessibility , Malaria/prevention & control , Pandemics , Pneumonia, Viral/epidemiology , Tuberculosis/prevention & control , COVID-19 , HIV Infections/epidemiology , HIV Infections/mortality , Humans , Malaria/epidemiology , Malaria/mortality , Models, Theoretical , Tuberculosis/epidemiology , Tuberculosis/mortality
15.
Lancet Infect Dis ; 20(6): 669-677, 2020 06.
Article in English | MEDLINE | ID: covidwho-688245

ABSTRACT

BACKGROUND: In the face of rapidly changing data, a range of case fatality ratio estimates for coronavirus disease 2019 (COVID-19) have been produced that differ substantially in magnitude. We aimed to provide robust estimates, accounting for censoring and ascertainment biases. METHODS: We collected individual-case data for patients who died from COVID-19 in Hubei, mainland China (reported by national and provincial health commissions to Feb 8, 2020), and for cases outside of mainland China (from government or ministry of health websites and media reports for 37 countries, as well as Hong Kong and Macau, until Feb 25, 2020). These individual-case data were used to estimate the time between onset of symptoms and outcome (death or discharge from hospital). We next obtained age-stratified estimates of the case fatality ratio by relating the aggregate distribution of cases to the observed cumulative deaths in China, assuming a constant attack rate by age and adjusting for demography and age-based and location-based under-ascertainment. We also estimated the case fatality ratio from individual line-list data on 1334 cases identified outside of mainland China. Using data on the prevalence of PCR-confirmed cases in international residents repatriated from China, we obtained age-stratified estimates of the infection fatality ratio. Furthermore, data on age-stratified severity in a subset of 3665 cases from China were used to estimate the proportion of infected individuals who are likely to require hospitalisation. FINDINGS: Using data on 24 deaths that occurred in mainland China and 165 recoveries outside of China, we estimated the mean duration from onset of symptoms to death to be 17·8 days (95% credible interval [CrI] 16·9-19·2) and to hospital discharge to be 24·7 days (22·9-28·1). In all laboratory confirmed and clinically diagnosed cases from mainland China (n=70 117), we estimated a crude case fatality ratio (adjusted for censoring) of 3·67% (95% CrI 3·56-3·80). However, after further adjusting for demography and under-ascertainment, we obtained a best estimate of the case fatality ratio in China of 1·38% (1·23-1·53), with substantially higher ratios in older age groups (0·32% [0·27-0·38] in those aged <60 years vs 6·4% [5·7-7·2] in those aged ≥60 years), up to 13·4% (11·2-15·9) in those aged 80 years or older. Estimates of case fatality ratio from international cases stratified by age were consistent with those from China (parametric estimate 1·4% [0·4-3·5] in those aged <60 years [n=360] and 4·5% [1·8-11·1] in those aged ≥60 years [n=151]). Our estimated overall infection fatality ratio for China was 0·66% (0·39-1·33), with an increasing profile with age. Similarly, estimates of the proportion of infected individuals likely to be hospitalised increased with age up to a maximum of 18·4% (11·0-37·6) in those aged 80 years or older. INTERPRETATION: These early estimates give an indication of the fatality ratio across the spectrum of COVID-19 disease and show a strong age gradient in risk of death. FUNDING: UK Medical Research Council.


Subject(s)
Coronavirus Infections/mortality , Pandemics/statistics & numerical data , Pneumonia, Viral/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , China/epidemiology , Hospitalization/statistics & numerical data , Humans , Incidence , Infant , Infant, Newborn , Middle Aged , Models, Statistical , SARS-CoV-2 , Young Adult
16.
Science ; 369(6502): 413-422, 2020 07 24.
Article in English | MEDLINE | ID: covidwho-595548

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic poses a severe threat to public health worldwide. We combine data on demography, contact patterns, disease severity, and health care capacity and quality to understand its impact and inform strategies for its control. Younger populations in lower-income countries may reduce overall risk, but limited health system capacity coupled with closer intergenerational contact largely negates this benefit. Mitigation strategies that slow but do not interrupt transmission will still lead to COVID-19 epidemics rapidly overwhelming health systems, with substantial excess deaths in lower-income countries resulting from the poorer health care available. Of countries that have undertaken suppression to date, lower-income countries have acted earlier. However, this will need to be maintained or triggered more frequently in these settings to keep below available health capacity, with associated detrimental consequences for the wider health, well-being, and economies of these countries.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Developing Countries , Global Health , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Poverty , COVID-19 , Coronavirus Infections/transmission , Humans , Patient Acceptance of Health Care , Pneumonia, Viral/transmission , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL